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PHILOSOPHICAL TRANSACTIONS.

1. The Integration of the Equations of Propagation of Electric Waves.

By A. E. H. Lovg, F.R.S., Sedletcan Professor of Natural Philosophy in the
Unaversity of Ouxford.
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,_J‘ Received December 29, 1900,—Read February 7, 1901.
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olm 1. I~ the older forms of the Undulatory Theory of Light, the propagation of the waves
e - , .. i

— was traced by means of Huvaeens' principle; each element of a wave front was
Eg regarded as becoming a source of disturbance from which secondary waves are
| emitted. The principle is indefinite, inasmuch as the nature and intensity of the

sources of secondary waves are unrestricted, save by the conditions that the secondary
waves must combine in advance so as to give rise to the disturbance actually pro-
pagated, and must interfere in rear so as to give rise to no disturbance. That these
conditions are insufficient, for the complete determination of the nature and intensity
of the sources in question, is proved by observing that different writers, proceeding by
different methods, have arrived at different expressions for “the law of disturbance
in secondary waves,” all these expressions satisfying the imposed conditions.*

In the more modern forms of the theory, the propagation of the waves is traced by
means of a system of partial differential equations. This system has the same form,
whether we regard the luminiferous medium as similar in its mode of action to an
elastic solid, transmitting transverse waves, or regard light as an electromagnetic
disturbance obeying the fundamental equations of the electric field. In both cases it
appears that all the components of the vector quantities which represent the dis-
turbance satisfy a partial differential equation of the form 9°¢/0t* = ¢* Vv *¢.

2. This equation is the same as occurs in the Theory of Sound. It has been
integrated in two ways. Poissont expressed the value of ¢, at any point, at time ¢,
in terms of the initial values of ¢ and 8¢/t on a sphere of radius of, with its centre
at the point. KrrcHHOFF} obtained a more general integral, in which the value of ¢
at any point is expressed in terms of the values of ¢, d¢/ov and 0¢/0f on a closed
surface S, separating the point from the singularities of the function ¢, dv being the
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* Lord RaviricH, “ Wave Theory of Light,” ¢ Encycl. Brit.,” 9th ed., vol. 24, pp. 429, 453.

T ¢Mém. de I'Institut, vol. 3 (1820), p. 121. Cf. Lord RAYLEIGH, ¢ Theory of Sound,’ vol. 2, ch. 14.

{ ¢Wied. Ann.,” vol. 18 (1883), p. 663 ; or ¢Vorlesungen ii. math. Optik’ (Leipz. 1891), pp. 23 e/ seq.
The result is given explicitly in equation (2) of § 7, infra.

VOL. CXCVIL—A., 287 B 17.7.1901.
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2 PROFESSOR A. E. II. LOVE ON THE INTEGRATION OF THE

element of the normal to 8.  KrrcarOFF'S integral can be shown to include PorssoN’s
by taking, for S, a sphere, of radius cf, with its centre at the point. In the case of
sound, or for any scalar disturbance, Kircunorr’s integral is directly interpretable in
terms of imagined sources of disturbance situated on the surface S; for all the
quantities that occur can be interpreted in terms of condensations and velocities. It
micht thus be regarded as providing an exact equivalent of Huyaens principle,® if
the disturbance involved were of a scalar character. Its application to light is open
to criticism (see § 8. tnfra).

Besides satisfying the partial differential equation 0°¢/0t*> = ¢*v %, the components
of a vector quantity, propagated by transverse waves, are also subject to the circuital
condition ; and the problem of integrating the system of equations is, accordingly,
not the same as the problem of integrating the single equation satisfied by the several
components. Sir G. Srokmst has attacked the more general problem, by extending
and transforming PoigsoN’s solution of the single equation. He has shown that the
components of the disturbance at any point O, and at any time ¢, can be expressed
as the sums of two parts, one depending on initial values on a sphere of radius ct,
with 1ts centre at the point O, and the other depending on initial values in space
outside this sphere.f] The latter part is relatively unimportant when, as in the
applications made by Sir (. Sroxs, the radius of the sphere is great, compared with
the wave-length of the disturbance; the former part has precisely the character
required for representing transverse vector disturbances, and it admits of transforma-
tion to a form in which it expresses the radiation received at the point O as due to
secondary waves sent out from surfaces other than spheres with their centres at O.
The transformation to a plane wave front was given in the paper above quoted, and
the results, which were deduced from this form of the integrals of the system of
equations, have had a very important bearing on the development of the theory.

3. The object of this paper is to present an investigation of a new system of
integrals of the system of equations that govern the propagation of transverse vector
disturbances, and to exemplify the use that can be made of such integrals. The
components of the vectors that censtitute the disturbance ought to be expressible, as
in KiromaOFFS solution, in terms of surface values on an arbitrary surface; the
elements of the integrals ought to be quantities characteristic of transverse vector
disturbances, as in Sir G. Storug’s solution ; and the results ought to admit of inter-
pretation in terms of sources of disturbance of definite types, as KircnHorr's result
does when applied to sound waves. It is shown that the method developed by
Kircmaorr can be adapted to the system of equations in such a way as to lead to

* 1t is so regarded by KircuuOFF (loc. ¢it.), by POINCARE, ¢ Théorie math. de la Lumiére,” vol. 2 (Paris,
1892), ch. 7, and by DruDE, ‘ Lehrbuch d. Optik.” (Leipz., 1900), p. 167.

+ ¢“On the Dynamical Theory of Diffraction,” ¢Camb. Phil. Soc. Trans.,” vol. 9 (1849), ¢ Papers,’ vol. 2,
p- 241.

1 See equations (29) and (30) of the paper above quoted, ¢ Papers,” vol. 2, p. 268.
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES, 3.

results of the kind described, and in particular that the disturbances can be regarded
as due to sources of two definite types. A source of one of these types is similar to
an infinitesimal Hertzian vibrator. The character of the most important part of the
radiation from such a vibrator is well known ; it is periodie, with a damping coefli-
cient, and is related in a definite way to a particular axis.®* The radiation from a
source of the corresponding type is related in the same way to the axis, but its mode
of dependence upon time is arbitrary. The assumption of infinite trains of simple
harmonic radiation, with or without damping coefficients, is an unnecessary restriction
of the mathematical formulee, and is inadequate to represent many phenomena. The
other type of sources is arrived at by interchanging the rdles of the electric and
magnetic forces in the type that is similar to Hertzian vibrators. There is a theorem
that disturbances, which can be represented as due to sources of both types, may also
be represented as due to sources of a single type, just as acyclic irrotational motions
of incompressible fluid may be regarded as due to sources and double sources, or to
sources only.

4. A very general system of integrals of the system of equations that govern the
propagation of waves having been obtained, it is natural to inquire after an expression
for the law of disturbance in a secondary wave that shall accord with these integrals.
The expression arrived at is rather simpler than that given by Sir G. Sroxss] as
regards the intensity of the secondary waves, but rather more complicated as regards
the orientation of the plane through the direction of displacement and the direction
of propagation. This plane is either the plane of polarisation of the sccondary wave,
or else it is at right angles to that plane. At one time it might have been interesting
to pursue the question further, and to determine the conclusion, as regards the
relation of direction of displacement to plane of polarisation, that could be drawn
from the new integrals; but the question is not now of importance, since it is certain,
on many grounds, that the plane of polarisation of light contains the magnetic force,
and 1s at right angles to the electric force.

5. [Partly re-written March, 1901.]-—Apart from this question of the plane of
polarisation of scattered waves, the chief use of a law of disturbance in secondary
waves is found in the solution by elementary methods of problems of diffraction ; this
use is not affected§ by such differences as exist between the law here found and that
obtained by Sir G. Stroxrs. But, in connexion with the application of any such law
to problems of diffraction through apertures, there also arises the question of the
distribution over the aperture of sources that would give rise to the transmitted

* The relation to the axis is the same for the forms given by HERTz, ¢ Electric Waves,” p. 143, as for
those given by K. PEARSON and Arick Lzg, ‘Phil. Trans. A, 193 (1899), p. 159. The forms given in
§ 13 include both.

T Lawms, ¢ Hydrodynamics,” pp. 66 and 67.

i ¢ Papers,” vol. 2, p. 286.

§ Lord RAYLEIGH, ¢ Wave Theory of Light,” p. 453.

B 2
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4 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

radiation. When there is no screen, such sources are determined for any imagined
bounding surface simply and directly by the incident radiation. [But, when there is a
screen, the distribution of the sources is not determined in the same way by the
portion of the incident radiation that would come to the aperture if the screen were
away. It is proved below that the state of the medium on that side of the screen to
which the incident radiation comes can be expressed by means of two superposed fields
of electric and magnetic force. The forces of one of these fields are expressed in
terms of integrals taken over the surface of the aperture; and the corresponding
disturbance is a system of standing waves, the amplitudes of which diminish rapidly
as the distance from the aperture increases. This disturbance can be described as the
“effect of the aperture.” The forces of the other field are determined by the actual
sources of radiation and the boundary conditions that hold over all the unperforated
portion of the screen. This disturbance can be described as the “incident radiation,
as modified by the action of the screen.” It is proved that, when the latter
disturbance is known, the system of standing waves, described as the effect of the
aperture, 1s also known. Further, it is proved that the distribution, over the aperture,
of sources that would give rise to the transmitted radiation, is determined by the
incident radiation, as modified by the action of the screen, in the same way as, if
there were no sereen, it would be determined by the incident radiation, unmodified.
The ordinary optical rule ignores the modification of the incident radiation by the
action of the screen, and the success of this rule appears to show that the effect of
this modification on the transmitted radiation is practically unimportant when the
wave-length is short. ]

6. The results obtained, in regard to the effect of an aperture, can be applied also
to the problem of the communication of electrical vibrations from a condenser to the
external medium, the outer conducting sheet of the condenser being perforated by a
small aperture, for, in this case, full account has been taken of the boundary-
conditions at the conducting surfaces in calculating the normal modes of vibration.
The communication of electrical oscillations from an electrical vibrator to the
surrounding medium presents a problem, which has hitherto been solved in a few
very special cases. The best known example is that of a spherical conductor, over
which, at some instant, charge is distributed otherwise than according to the
equilibrium law. The waves emitted have definite periods, but they decay so rapidly
as to be practically dead-beat.* Such a system sends out into the medium a pulse
of radiation, rather than a t¢rawm of radiation. The greater permanence of the
vibrations of HErTZ'S “resonators,” and of condensing systems, has been connected
with the existence of greater electrostatic capacityf in such systems; but no

* The problem is solved by J. J. THOMSON, ‘Recent Researches,” pp. 361 ¢f seq. The rate of decay
of the oscillations is discussed on p. 370.

7 J.J. THOMSON, ‘ Recent Researches,” p. 396. Cf. J. LARMOR, ‘London Math. Soc. Proc.,” vol. 26
(1895), p. 123, footnote.
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 5

problem of the decay of oscillations of a system with large capacity, through the
gradual transmission of the energy to a distance, has so far been solved. For a
condenser with concentric spherical conducting surfaces, the outer conducting sheet
being very thin, and having a small circular aperture, the problem can be solved by
means of previously known analysis and of results obtained in this paper. It
appears that, so long as the outer conducting sheet, and the size of the aperture,
remain the same, the rate of decay of the oscillations diminishes, as the capacity
diminishes ; the oscillations of a condenser with small capacity, obtained by making
the radius of the inner sheet small compared with that of the outer, are much more
slowly damped than those of a condenser of large capacity, obtained by making the
radii nearly equal. This result applies to the oscillations of high frequency,
involving a large number of nodes, as well as to those of lower frequency ; and it
suggests that the comparative permanence of the oscillations of condensing systems
is to be traced, rather to the screening action, than to the increase of capacity.™ A
further result, that the oscillations of high frequency and many nodal divisions, are
more rapidly damped than those of lower frequency and fewer nodal divisions, is in
accordance with the conclusions arrived at by Sir G. Srokes,T for the like problems
concerning sound.

[Added, March, 1901.—Since the paper was sent in, I have found that a similar
method of integration has been employed by V. Cerruri, ‘ Rome, R. Acec. Lincei,
Rend.,” 1879-80, for the equations of small motion of an elastic solid. The funda-
mental particular solutions, there used, are the same as (17) of § 11 enfra; and the
solution of the problem of the vibrations of a solid, with a given boundary, over which
the displacements, or the tractions, have assigned values, is developed on the basis
of an existence-theorem, of the same kind as that assumed in § 21 ; no application is
made of the results to problems of radiation.]

KircHHOFFS Integral.

7. Suppose that ¢ is a function with the following properties :

(1) Outside a given closed surface S, ¢ and its first and second differential coeffi-
cients, with respect to x, v, z, are everywhere finite and continuous ;

(2) ¢ vanishes at infinite distances from S ;

* March, 1901.—Mr. LARMOR has called my attention to the fact that the work in the paper does not
show that «ll methods of increasing the capacity, without altering the outer conductor or the aperture,
are accompanied by increased dissipation. For instance, the capacity of the condenser might be increased
by displacing the inner conductor relatively to the outer, without altering its size and shape, or by
replacing part of the dielectric plate by conducting material. In such cases there are some analogies with
other physical problems, which suggest a diminished rate of dissipation. Against them must be set the
analogy with the problem worked out in the present paper.

t ¢ Phil. Trans.,” vol. 158 (1868).
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6 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE
(3) ¢ satisfies the equation

ROt =i (1),

at all points outside S, ¢ being a definite constant, and v? denoting the operator

ab) ng D
0? o o®
o T op T 6

The value of & at any point O outside 5, and at time 7, can be expressed as a
surface-integral taken over S ; in fact this value is

-GBS mes

where dv denotes the element of the normal to dS drawn outwards (i.c., into the
region of space where O is situated), and the expressions in square brackets [ ] are to
be formed, for each point of the surface, at the time ¢ — »/c, = being the distance of
the point of the surface from the point O.

This theorem was obtained by Kircnmors* by an application of GRERN'S theoremt
to the function ¢ and an auxiliary function V, which satisties the equation (1) at all
points except O, and has the form

where F is a function to which suitable properties are assigned.

8. [Partly re-written March, 1901.]—If ¢ were the velocity potential of sound
waves in air, the terms of (2) that contain [¢] and [9¢/dv] would be interpretable in
terms of velocity, and those that contain [0¢/0¢] would be interpretable in terms of
condensation ; the expression (2) would represent the motion at any point as due to
sources of definite types distributed over the surface S. But, if ¢ is one of the
components of a vector quantity, propagated by transverse waves, [0¢/0v] has no
physical significance, and the expression (2) cannot be interpreted in terms of appro-
priate sources of disturbance.

Again, the expression (2) may be interpreted as showing that every element of the
surface S becomes the centre of diverging secondary waves. If ¢ is one of the com-
ponents of a vector quantity, and the primary waves are transverse, the application
of Kirchhoft’s theorem is open to the criticism that the secondary waves are not always

* ¢Vorlesungen ii. math. Optik,” pp. 23-27.
T The theorem referred to is the one expressed by the equation
JIJ@vsv-voryin = [(vet-silas

Jd ov ov
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 7

transverse, although, when synthesised, the disturbance, to which they give rise, is
transverse.

[The criterion of transversality of a vector disturbance, propagated by wave motion,
is that the vector concerned is everywhere circuital ; and this implies that, in the
case of diverging waves, the direction of the vector tends, at great distances from the
source, to be at right angles to the radius, drawn from the source. Now, if we take,
for example, the electric radiation represented by the expressions in § 13 infra, and
choose, as the surface S, a sphere, with its centre at the source Q, the magnetic force

3

Magnetic force

at the point Z (x = 0, y = 0) would be parallel to the axis y. KircHHOFF'S integral
would represent the magnetic force, at any point O, as made up of components, con-
tributed by secondary waves, diverging from the elements of S; and, in the wave
diverging from Z, the maguetic force would be everywhere parallel to the axis y. It
can be verified readily, by forming the expression for this force, that it is not circuital ;
but it can be seen at once, without forming this expression, that the secondary wave
is not transverse ; for, at any distance, however great, it is not at right angles to the
radius vector ZO, unless O is in the plane (x, z). The particular example is sufficient
to substantiate the criticism; but a little reflexion shows that there is nothing
peculiar to the example. In general, let (=, B8, y) be the vector, and suppose that at
some point the direction of the vector is independent of the time, we may take the
surface S to pass through the point, and take the axis 7 parallel to the direction of
the vector at the point; then « and y vanish; the equations « =0 and y = 0 will
represent two surfaces passing through the point, and we may take the direction of
the normal to S, at the point, to be the line of intersection of these surfaces. Then
a, 0a/dt, da/ov and y, dy/ot, dy/dv vanish at the point, at all times. In the secondary
wave sent out from the point, the vector is everywhere parallel to the axis y; and,
accordingly, the secondary wave is not a transverse wave. |
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8 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

Equations of Propagation of Electric Waves.
9. The equations of propagation of electric waves in free aether are

L 0%V, 2) = curl (s B, ) )l
. (...H.,.m
J

~ gy =l (Y,2)

where (X, Y, Z) denotes the electric force, measured electrostatically, (e, B, y) the
magnetic force, in electromagnetic measure, and ¢ the velocity of propagation of
electrical effects. I propose to adopt, as a means of formal simplification, and without
attaching to it any definite physical meaning, the view™ that (a, 8, y) may be regarded
as a ““ generalised velocity,” and to introduce the corresponding * generalised
displacement ” (u, v, w), so that

0
5 (u, v, w) = (a, B,y) . . . . . . . . .(5)
I also introduce the vector (f, ¢, ) by the equation

(fig, h) =carl (w,0,w) . . . . . . . . .(6),

so that (f; g, h) is twice the “ rotation” corresponding to the displacement (u, v, w).
The first of equations (4) becomes

XY, Z)y=c(fgh) . . . . . . . . (1)

and, according to the view above referred to, this equation may be regarded as
expressing a purely kinematical relation, while the second of equations (4) gives the
equations of motion of the sether. They are

2

o (u, v, w) = SAV¥(u, v, w) . . . . . . . . (8),
with the circuital relation
ouw oy . Ow

Further, it is convenient to derive (u, v, w) from a vector potential (F, G, H) by
the equation

(u,v,w)%:curl(F,G, H . . . .. . . . (10),

* J. LARMOR, ¢ Phil. Trans.,” A, vol. 185, Part IT (1894).
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. Y

taking (F, G, H) to satisfy the same system of differential equations (8) and (9) as is
satisfied by (u, v, w). The vectors (f, g, ) and (F, G, H) are connected by the
equations

o

(fgh) ==V, G H) = =22 (F, G H) . . . . (1)

1t 1s also convenient sometimes to quote the fundamental equations in the forms

-

8(2‘ (f, I /L) = curl (Ot, Ba '}’)

0

: (12).
I
— Gl By) = cul (£ 1)

L
(
!
J
The quantity (f; g, /) will sometimes be called the “ electric displacement”; it is

the product by 4z of the quantity so denominated by MaxweLrn; the quantity
(0, v, w) will sometimes be called the  magnetic displacement.” MAXWELL'S vector

potential would be expressed, in the above notation by éa} (F, G, H).

Special Types of Solution, Sources of Disturbance.

10. 1t has been pointed out that KircnuaorF's method of integration of equation
(1) depends on the application of a certain reciprocal theorem to two solutions of that
equation, one of the two having the form (3). When we seek to apply a similar
method to the system of equations (8) and (9), we are met at the outset by the
difficulty that no simultaneous solutions of the form (3) exist, and by the necessity of
devising some forms of solution, which shall become infinite at the origin, and contain
arbitrary functions. If we regard the form (3) as corresponding to the solution 7!
of the equation v’¢ = 0, the appropriateness of seeking for solutions of the system
(8), which correspond to spherical harmonics of order different from zero, at once
suggests itself.

If in equation (1) we put

b= b5,

where S, is a spherical surface harmonic of order #, and ¢, is a function of 7 and ¢, we
find for ¢, an equation which can be written

(Bm ) (4= L2

By using the relations®

* The method has been used by R. R. Weps in the discussion of Riccatr’s equation ; it is indicated by
J. W L. Graisnzg, ¢ Phil. Trans.,” vol. 172 (1881), p. 804.
VOL. CXCVIL.—A. c
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10 PROFESSOR AL K. H. LOVE ON THE INTEGRATION OF THE
[ w4+ 1) /0 n\ n\ n [0 w41\ /0 w4 1Y o,
18/3 7?2 } Ka, r) <81 + 5 ) \(}r +- r ) (87- R ) k
/0 2\ /0 n—1 d 1y Ch
and "__; " (_ - ( SV - et -+
e (\()r ) \or T X /> F=u <1 or) \r)’

where K is any function of », we find for ¢ the form

(ﬁ"—"7”%lb/1 887\)”{]‘(/ Ué);l:f('/'—-(}é)}’ S (13)

where F and fare arbitrary functions.

It is now easy to write down simultaneous solutions® of the system of equations
(8) and (9). Taking e, to represent a spherical solid harmonic of positive degree u,
and writing

dpo=F@ +ot)y+f(r—ct)y, . . . . . . . (14,

i sob of such solutions is given by the equation
) — by o 0 9 0 9 0h
(, v, w) = ( b 81> (9} J/q — %y, k3, T @ oy~ !/ar/)m/, ;. (1))

and a second set of such solutions is obtained by taking the curl of the first set. We
should tind for example, after a little reduction,

cw 0o w4l /13 \)"_[(}_ AN A,,,A_?! /1 Q.Y”/ﬁ s O (@ )
oy 0 2w+ 1 (1’ or/ o) A 21 k O o) PR

(16)

The solutions given by (15) may be referred to as “solutions of the first type,”
and those given by equations such as (16), as “solutions of the second type.”

11. For our immediate purpose it will be sufticient to take n = 1 and o, = x. The
components of a vector which yields a solution of the first type are

L PR R L Y N O

\ 7

and the components of the curl of this vector are

/Lo, 30 3 S/ 1op, 10
(y* + 22)< 5 ai + . 89/50 — ¢u> - 3(\’ I ﬁbo)a jl
{
|
|
|

. 1 8“¢’ a‘}bo ,_:,;A ‘
——wy<—- 43 a;~0+ M or gt ¢U>’

( 1 a d’u + 3 ad’n 5 (b\

— L2 . T .

G " or ERAY J

* When the fuinctions that oceur are simple harmonic functions of the time, the solution of the

simplified system of equations is well known. See Lans, ¢ Hydvodynamics,” pp. 487 and 555 ¢f sey.
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 11

In these expressions ¢, is any solution of the equation

o T ot

a‘l¢o_(wa“¢o o (]_9),

Tt is worth while to ohserve that the components of the curl of the veetor repre-
sented by (18) are

0, — <1 o’ 4)0 . ?.‘.ﬁ) Yy <_].; 6)4)0 — law¢0> o (20).

PR 7 o O

12. We may use the results just obtained to describe two types of sources of electro-
magnetic disturbances. We shall take ¢, to be a function of of — », say

bp=(ct —r)y=¢ . . . . . . . . . (21)

In the case of sources of the first type, the magnetic force is axial, and the lines
of electric force are circles about the axis; when the axis is the axis of x, the vector
potential has the form

0, ;g<<15+%¢> —~~(¢>+~~¢> o (22)

the magnetic displacement has the form

—<7 3y e )<¢>+ ¢\ iﬁtgqs
= (3 + 8-¢-¢+%¢>, : (23)
R BRI
and the electric displacement has the form
0, e <¢ + q5> 5 <¢ + ;¢> S (24),

In these formulze the dots denote partial differentiation with respect to the time.
The axis of the source is the axis of «, corresponding to w;, =@ in § 11 ; when the
axis of the source is in the direction (I', m’, '), the result will be obtained by adding
the expressions for the component vectors due to sources in the directions of the
axes, and given by putting I'¢, m'¢p and /¢ in place of ¢ (with cyclical inter-
changes of the letters «, y, z). If the source is at the point (', v/, 2'), instead of the
origin, we have to write © — &/, y — ¥, z — 2’ in place of @, ¥y, 2, and take 7 to be the
distance of (x, y, z) from («/, 3/, 2').

13. In the case of sources of the second type, the electric force is axial, and the
lines of magnetic force are circles about the axis; when the axis is the axis of «, the
vector potential has the form

¢ 2
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12 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

2 ?/2__}_29 o ?/‘J + 22,

(G=s" )4 0d) =00

- 3¢+30¢+02¢, Coe e (25),
ap s drl g ‘
45'¢)+’(f¢+("g¢’>: J

the magnetic displacement has the form

"y A TN ¢
OJ 7,3 <X + G X> H 1,‘:; <X -.l— o X() 3 B . N . . . (26),

RN ¢ 14

Q=

©

where X =
and the electric displacement has the form

2 v+ & T kA
—<“‘3 >(X+’:X>+ s X

) 5
7 7 \ ¢

@y

P ,)72“\
—T—5<3><+35x+é—2x>, S (28).

X2
=
5

7

P ®
<3x+3gx+'ch>-

The most important part of the radiation due to a Hertzian vibrator appears to be
of this type.*

The functions ¢ and x, which figure in the expressions for the electric and magnetic
displacements due to sources of the two types, will be referred to as the ¢radiation
functions” for the sources.

In the expressions here obtained the source is at the origin, and its axis is the
axis of @ ; the expressions for the displacements due to a source, of arbitrary position
and direction, can be deduced as before.

The Reciprocal 1heorem.

14. Let (u, v, w) be a possible system of magnetic displacements, and (f; g, 2) the
corresponding electric displacements, which are free from singularities in space
hounded by one or more closed surfaces, denoted collectively by 8. Then w, . . . are
functions of w, v, z, t, which, with their first and second differential coeflicients,
are finite and continuous throughout this space. Denoting differentiation with
respect to ¢ by a dot, we observe that the equations of motion might be obtained by
transforming the variation of the Action functionf

fdt j’“’{ug + o* i — E(fF 4+ ¢F + B }dr

* Hrrrz, ¢ Electric Waves,” p. 143. t A factor 1/87 is omitted.
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 13

according to the rules of the Calculus of Variations. If then, in the variation
2Iw”h%u+®%+www—oﬂﬂy+g®+w%ﬂ%,

we replace &, . . . hy a second system™ of possible displacements «’, . . . we shall
obtain a symmetrical expression

"H{?,‘m‘{,’ + o0 i — (7 + g9’ + R)de . . L (29),

which admits of a similar transformation ; and the result obtained, when simplified
by means of the equations of motion, will consist of the volume integral of a perfect
differential coeflicient with respect to ¢, and a surface integral. The symmetry of

the expression (29) then leads to the reciprocal theorem.
We have

[ f f (v’ + 00" 4 ) dr = ”H% (v 4 00 4 ww') — (i 4 W'+ ww')dr,

the volume integrations being taken through the space bounded by the surfaces S.
Also, denoting by /, m, n the direction cosines of the normal to S drawn into this
space, we have

”J’ (" + 99 + W) dr = — “{(gn — hin)u’ + (Wl — f)v" + (fim — gl)w'}dS

— “H(g—rf - g—% w4 (g—? — g{> v+ (g]é - %Z>zt;’}clr.

Hence the expression (29) becomes

(et =g+ {+eli-a) o for oG5} ]

\

+ ”I §¢ (w4 o0 4 ') dr 4 ” {(gn — k) w' + (bl — fa) v’ + (fim — gl) w'} dS.

The first line vanishes identically ; and, from the symmetry of the expression (29),
we deduce the reciprocal theorem

”f%(uu’ + o' 4 ww')dr 4 H {(gn — hm) v’ + (W — fo)v" + (fin — gl)w'} dS

= (][5 @t 0 ity - ([ ' — Wy (T =)ot (fm = gy as
. (30).

* The second system, as well as the first, satisfies the fundamental equations.
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14 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

We integrate this equation with respect to the time, between two fixed values ¢,
and ¢, and we thus obtain the equation

r di ” $ulgn — Km) + oWl — ) 4+ w(f'm—gl)
+ f(w'n —wm) 4+ g (W'l —uwn) 4 b (w'm — 1)} dS

t

1 ’ o/ N ’ W L
== U” (= w4 e — e i — 2 w)dr:] Y 10

lo

If the functions involved are such that the volume integral on the right vanishes,
and that the order of integrations on the left can be interchanged, we have

H dS r{u(g’n — Wm) + v(h'l — f'0) + w(f'm — ¢')}dt

)

= ” ds r‘ {u'(gn — ) + o' (Wl — fa) + w'(fm — gl)¥dt . . . (32).

[}

This equation plays the same part in the present theory as GREEN'S equation

[ as = [[vias

V and ¢ being harmonie, plays in the Theory of Potential.

Integration of the General Equations.

15. We shall now suppose the boundaries of the region of space, to which the
theorem of § 14 is applied, to be (1) a closed surface o, containing none of the
singularities of the functions w, v, w, (2) a small sphere o, with its centre at a
point O, inside o. Then, taking O as origin, we shall assume for «', v, v/, the
expressions (17) of § 11, and for f/, ¢, &’ the corresponding expressions (18). For
I, m, n at o, we have to put @/r, y/r, z/r, and the contribution of o, to the left-hand
member of (31) becomes

n 2 10 N1 39 3
j dt ff(’l)’c — Ql,fy) { 5 (éqio — ¢ \) + s <D‘/410 — ;“" 5?“0 + ;7 ¢O>}(,Z(T9

5 v )T

+rldt”(\ffkj;ﬁ—-gy—-ll/f?%)(r?gij’—-</>“\>do-2. G E)

] i ol
9 i 7 /

We take ¢, to be of the form ¢(i 4 ¢t), so that

0 _ 10 |
ar“c‘a/,""'~~ee..(34),
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KEQUATIONS OF PROPAGATION OF LELECTRIC WAVES. 15

and suppose® that the function ¢ is very nearly zero for all values of its argument ¢,
except such as lie in the interval between — {; and ¢, where {, and {; are two very
small positive numbers ; further, we suppose that between these values ¢({) becomes
so great that

[o@ac=1. . . .. . .. @)

—gu

We may then choose ¢, and ¢, so that, if' 7, is the radius of the sphere o,

ry + ¢ty < — L, and 1y 4 ot > ()

then we shall have

[ftr =L [p@ac= "

Ly —‘go

a¢ll "o S,
[ Peae =" [ @ ae = o,
lﬂ —gﬂ

and, provided r; is sutliciently small, these will hold for any negative value ol ¢, and
any positive value of £,

With this choice of ¢, the second line of the expression (33) becomes — 3 4w fo™t
i the limit, when 7y is indefinitely diminished, £ being the value of f for the point O
and the time ¢ = 0.

Tir the first line of the expression {33) we develope v and w in such forms as

v= (1), + Gh) + 9 (%/)0 +z (2) + terms of higher order,

where (), indicates that the value at O is to be taken ; we observe that

b agd)o 1@ /
f e = Cf ¢" () df =0,

ly =%

and find that, when 7, is diminished indefinitely, the limit of the first line is the

same as that of
[l {50~ )} o

ty

or it 1s — § 4w foo~ L

* The process is adapted from Kircuuorr, < Optik,” pp. 24, 25.
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16 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

Accordingly, the contribution of o, to the left-hand member of equation (31) is
— 4w fyoh

In obtaining this result, we have interchanged the order of the integration with
respect to t and the integration over the surface o,. This step is certainly permissible
i’ the subject of integration is, in each case, a continuous function of , y, 2, ¢, for all
the values that occur. Equation (35) and this condition can be smtlshed in any
number of ways, and, in particular, by taking a very large value of u, and putting,
after KIRCHHOFF,

¢(€)=\7ﬁ—0“"252> Co e (36,

provided we suppose that 2, is small of order u~0.

With the same choice of ¢y, ¢, ¢;, the right-hand member of equation (31) can have
the Iimit zero. For this it is sufficient that, for all points between o, and o, the
quantities o/, v, w’ and 24, @', 4" should be ultmmtdy zero wheun ¢ 1s etther {, or ().
This 1s the case if » + of is negjamtwe and » 4 ¢t is positive for all values of » that
oceur. Iquation (31) then takes the form

H as glldt{u’ (mh — ng) + " (nf — lh) + w' (lg — iny")

ly

+f7 (mw — ) + g (nu — lw) + L' (lo — mu); = dnfie™ . (37),

where the surface integration is taken over o only.

The quantities o/, v/, w' and f’, g, B have values, which are not extremely near to
zero, only when » 4 ¢t is very near to zero, 1 being the distance of a point on the
surface from the point O. The integration with respect to ¢, mn the left-hand member
of (87), can accordingly be carried out by observing the rules

i ; 1
[Xolt = (00,

c

to

‘(hx aag?_(l dt = i j X ¢,’0 dt = — j (]SU BX dt = (j,<g>[(>L I
Iy ty lo ©
P, 1 P, L /ox

| X g = f X gp dt = I ‘7’0 5= <a¢9,>t= .

LU t() l(l ¢

We thus find for the value of £ at the point O, and at the time ¢ =0, the
equation


http://rsta.royalsocietypublishing.org/

A

\

A

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

.
/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 17

tafy = ([a8] Lt = mf) + S = w))} = S {r—m) + i = 1)}

T
J

73 .5
a9 3
¥+ & "

¢

4+ %{{d (nu — lw) + 3 ;(nu — ) + z-z(m'i - Zw)}
mz 71 . . 7~2 3 . .. c
4- s {3 (lv — mu) + 3 E(Z’U — mar) + & (I — mu)}}, ... (38),

in which the values of u, %, . . . h, at any point of the surface, at time ¢ = — 7/c>
are to be calculated, and the integral formed with these values. ‘

16. In this equation, the point O is the origin, and the point (x, , 2) is on the
surface.  We can express the value of f, at any point (x, v, ), and at any time ¢, by
suitable changes. We have to write ' —w, ¥/ — v, 2 — 2z for «, y, 2, and, in the
expressions for u, % . . . in terms of @', %/, 7 and ¢, we have to substitute for ¢,
t — r/c, where # is the distance between the points (z, v, 2) and (2, ¥/, 2'). Further,
when the form of f has been obtained, the forms for ¢ and % can be written down by
symmetry, and the forms for %, v, w can be deduced from those for f, g, &, by writing
F, G, H instead of u, v, w, and u, v, w instead of f, g, h.

It is convenient to have, for reference, the explicit expression of the results. For
u, v, w we have
dmu = ” ds [—- 7"/—:%!{(% — mu) + 7(; (v — mu)} + ?—;éﬁ/{(nu — lw) + g(‘nu — Z'u‘))}

7

h—}- {% _ 3 _]/M—_i)g} {(mH — nG) + ?C:(fnzH — 7’1(})}

el e

_y=yr+ =) (I — n()

7.302
- Ny — o — ) 2 . ..
=y y) {3 (nF — [H) 4 8" (nF — 1) 4 1 (n — zH)}

(x —a)(z—7)

p . . 2 . ..
+ =2k {3(ZG—mF)+ 87 (1¢ — ml) +762~(ZG-—mF)H,

&

Ay = ” ds l:_i_;gi/{(mw — ) + %(mw — m))} +- ;x/{(lv — mu) + :j(lv - mu)}

+£0€—_”>75£y_'<’/?{3(mH—nG)+3§(mH—nG)+§(mH—“G)}

2 v — ) o (1 — ) o, .

+ {;_3 PN Gt t (* %l}{(np — IH) + © (nF — ZH)}
=P+ @—2P, = -

— =T i —

G=y)=4)] e e g T -
e {3 (G — mF) + 8" (16 — mil) + = (16 — m]ﬁ)ﬂ ,

VOL. CXCVIL—A., D
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18 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE
r - A o 1 Y4 -
4w = “ ds l:-—% 'yg»--gii(nu — {w) + ;(nu — ) f —I—?/ 3 ¥ { (maw — nv) + :—}(mw — m")}
-+ G _3035/ =) {3 (mH — aG) + 38 :— (mH — u¥) + )25 (mH —_ nG)}

—y)z—7 - . 2
+ OO sl — 1) £ 3] (0 = 1)+ (ol — 1)

745
2 (v — a')? 4 (y — o' )] o .
+ {;— 3 L H(ZG-—mF)—}—ZC(ZG—-mF)}
@@=+ (=)

(16 — mﬁ‘)jl .

3.9
,.)130~

And for f, g, b we have
saf = [[as| =72 = mp)+ g = m) )+ = )+ (= )

+ {7% -3 (‘y“:ﬁ;:(i-“y)ﬂ} {(mw — nv) + g(mw — m")}

_ =P+ =)
s

(mw — ni)

+ (=2 )7#——— ¥) «{3 (nu — lw) + 3 z} (i — lw) + z; (nii — lw)}»
T
¢

-+ @--_—%,))E{: ) {3 (lv —mu) + 3= (lv — mu) + :Jj (ly — mié)}:] ,

dmg = “ dsS L—z ;_3'4 {(mh — ng) + Z(mh - ng')}—{— v ;1{(@ — mf) 2(1_(] — mf) }
+ @—j——x,)lgl:“y’—) {3 (mw — nv) 4 3 %(mw - nv) + g (i — ni")}
L7 7 J
_ =2V -+ (z— 2y

7302

L G=E=2) {30 — mu 437 (15 — ) + (s — ma)H ,

p 2 gt (”f-«_»-w} {(nu, — o)+ (it — L)}

(nii — lw)

o

tah = ([ ds [ -7 "’“{(nf- Ih) 4 (nf — zh)} +15 ?"{(mh — ng)+ * (mh — ng‘)}

(2 — 2 2

+ _Azéz_ ) {3 (maw — nv) + 3 2 (mab — nv) + zq (map — ni)’)}

2

4 st {3(nu-—lw)+32(7%'6—1@0)—!-10:3(”55“'”‘7)}

4 {% _ 3 (z — ') -:5(?/ - 3/)2} {(l«v — mu) + %(lv — mu)}

A
z—aY 4+ (y—y»P,,. .,
¢ ) 7~502( (o — mu)-] .
Te all these t — /¢ is to be put for ¢ before integration.
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 19

17. Tt may be verified without difficulty by using KircHuoOFF's method that the
integrals written down in § 16, when taken over a closed surface S, not containing
the point (z, ¥, z), but containing all the singularities of the functions u, v, w, f, g, &,
represent the values of 47w, . . . at the external point (z, y, ), provided the normal
(1, m, n) is drawn towards the exterior of S. It may also be verified, in the same way,
that, if the surface S contains the point (z,y,z) and all the singularities of the
functions, the integrals in question vanish identically.

A particular case, which leads to a verification of the formule, is afforded by
taking the surface S to be a sphere, of radius ct, having its centre at the point (z, v, 2).
For this we have

x—a =1lr, y—y =mr, z—2 =mnr, r=0ct

and the values of the quantities u, », . . . , at points on S, are the initial values,
ug, Vg . - . , of these quantities. Now the terms of 4mu that contain u, v, w,
explicitly are

P2 j j dS{u, — U(luy + mvy + nwg)l,

which = »7? H dSu, — 773 “’ dS (x — ') (luy + ma, + nw,)

= p? H dSuy — 73 J’H ugdr 17 “j (x — ) (au'o + g;(: %3’)617;

N2
\ 0L

where the volume integrations extend through the volume within S, and the last
volume integral vanishes identically. Again, the terms that contain F, G, H
explicitly are

;-3 H ds (nG, — mH,),

which ' = 773 “[ @I;,Q — %%’> dr, = r3 ’(H wodl.

Further, the terms that contain ¥, G, H explicitly can be written

Pl [ [ dS (mhy, — ng,)

by observing that ¥ = *v®F = — ¥, . . .

D2
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20 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

The integral last written is
([ v, o, ou, Ow
-1 9y O 0 0
) 8 {'m (\ax’ 8y'> (a~ 800)}
=¢—1“'ds{-(l%1‘%+m‘m° 8”0)+( %o 2 %@;0)}

| @{’ 0 [ou, av(, ow,
el 1“CZS j‘,H\aTKaL _l" I >d77

~

of which the volume integral vanishes ldentlcally‘ The terms which contain 2, v,
explicitly, and those which contain F G H explicitly, may be transformed in the
same way, and we have finally

1 . Dy 1o ] :
" = 4W0%2{t”uods + {[uds + et [[ 5 as } Do (39);
and this is identical with PorssoN’s integral® of the equation

Q*ufot? = *Viu

in terms of initial conditions.

18. The results can be interpreted in terms of sources of' disturbance of the two
types previously investigated. Any point of the surface S must be regarded as the
seat of a source of the first type, and of a source of the second type. The axis of
the source of the first type is at right angles to the direction of (F, G, H), and is
tangential to the surface; its radiation function is the product of dS, the resultant
of (F, G, H) and the sine of the angle, which the direction of this resultant makes
with the normal to the surface. The source of the first type is equivalent to three
sources, with their axes parallel to the coordinate axes, and with radiation functions
equal to

— dS(mH — 2G), — dS(nk — (H), — dS(IG — mTF);

these expressions, for any point on the surface, are functions of ¢, and they take the
characteristic form of radiation functions, when ¢ — r/c is substituted for ¢.

The axis of the source of the second type is at right angles to the direction of
(u, v, w), and is tangential to the surface ; its radiation function is the product of dS,
the resultant of (u, v, w) and the sine of the angle, which the direction of this
resultant makes with the normal to the surface. The source of the second type is
equivalent to three sources, with their axes parallel to the coordinate axes, and with
radiation functions equal to

— dS(mw — nv), — dS(nw — lw), — dS(lv — mu);

* The form of PoIsSON’s integral usually given requires the performance of differentiation, with respect
to £, upon an integral taken over a sphere of radius cf, and thus, when the differentiation is carried out,
there will be three terms in the complete expression; it is easy to verify that these terms are precisely
those given in equation (39).
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 21

these expressions are to be formed for any time ¢, and then ¢ — »/cis to be substituted
for ¢ in them.

Reduction to o Single Type of Sources.

19. We may seek to express our results in terms of sources of a single type,
instead of using two types of sources. The method to be followed is analogous to
that used by GRrEEN for the Theory of Potential® If V is a function, which is
harmonic at all points outside a closed surface S, the value of V at an external

point O is .
1 10V or~1
-jﬂﬂ;g_v@ﬁ&,..... L (40),

where dv is the element of the normal to S drawn outwards, and r is distance from O.
If now V' is harmonic within 8, and equal to V on the surface, this becomes

LAY v
—@ng+$%&........um

where dv' is the element of the normal to S drawn inwards. This result is obtained
from the reciprocal theorem

5= v

r oV

both V' and 7~ being harmonic at all points within 8. Further, we know that there
cannot be two functions satisfying the conditions satisfied by V’; the theorem that
there is one such function is the fundamental existence-theorem of the Theory of
Potential. The expression (40) may be interpreted in terms of sources and doublets
on S; the expression (41) admits of a similar interpretation in terms of sources
only. T

20. In adapting this process to the present theory, we begin by proving that there
cannot be two sets of related vectors which

(1) are free from singularities at all points within a closed surface S ;

(2) satisfy the system of equations (12) of § 9 at all points within S ;

(3) yield the same tangential components, for either of the two vectors, at all
points on S ;

(4) vanish throughout the space within S for some value ¢, of t.

If there were two such sets, their differences («, 8, y) and (f; g, ) would satisfy

* GREEN, ¢ Math. Papers,” p. 29.
T Lawms, ¢ Hydrodynamics,” pp. 66, 67.
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22 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

the conditions (1), (2) and (4), and either (e, 8, y) or (£, g, &) would be normal to S,
at every point on S; so that we should have either

a:B:y=101:m:n,
or Srg:h=1:m:n,

(1, m, n) being the direction cosines of the normal to S drawn inwards.
In both cases

[at[[asgu8h = yg) + m(uf = ah) + n(ag — Bf)} = 0.

ty

Now this integral is

~faflfal {20+ + ) = (o= +-+ ]]

/
1y

the integral being taken through the volume within S, and this is

—_ ;j“”clq.[(fz + 92 + ]L‘z) + é(ae -+ Bz + ye):,t,
since «, B, y and f, g, h vanish when ¢ =¢, The expression last obtained cannot
vanish, unless , 8, y and f, g, & vanish, at all times, and at all points within S.  This
proves the theorem.

It follows from this theorem that, if either the tangential components of (u, v, ), or
those of ( f, ¢, k), are given at all points of S, the solution of equations (8) and (9)
of § 9 1s unique.

21. Now let (u), v, w)) and (uy, v,, uy) be two sets of possible magnetic displace-
ments, for which there are no singularities within a closed surface S; and let F, . . .
be the corresponding vector potentials, and f; . . . the corresponding electric dis-
placements. Suppose further that, at a certain time ¢, all these vanish at all points
within S. We shall apply the theorem of § 14 to these vectors. We identify the
set with suffix 2 with the set previously accented (§ 15), so that w, =/, . . . , the
point O, which is the scle singularity of the accented set, being outside S. Then the
right-hand member of equation (31) vanishes, and we have

rdt H dS fu(g'n — h'm) 4+ v (Wl — f'n) 4+ w,(f'm — ¢'1)}

= rdt ”dS ' (g — hym) + V(i — fin) + w'(fim — g,0)1.

If there is a set of magnetic and electric displacements, free from singularities
within S, and making the tangential components of the vector potential on S the
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 23

same as those in the solution (u, v, . . . &) for external space, this set also makes the
tangential components of electric displacement the same as those in the solution for
external space ; we take this to be the set with suffix 1, so that, on S,

gn — hm = gn — hm, G — Hm = Gn — Hm,)

J

Equation (37) of § 15 now becomes

el f) = ” dsS .":dt [f'im(w—w)—nw—uv)}+g{n(uw—u)—1(w-—w)}
+ Wl (v—2v)—m(u—u)]. . . (42).

The corresponding equation for u, would be

drely, = ”clS r de[w{m(w—w) —n(v—=2)} 40 {n(w—u)—1(w-—w);
t
4+ w{l(v —v) —m(v—2)}]. . . (43).

The results would thus be interpretable in terms of sources of the second type
only, the radiation functions of the sources depending upon the surface values of
w — 1, v — v, w— w, in the same way as those in § 18 depended upon the surface
values of w, v, w. We might, in a similar way, show how the general forms of the
displacements could be expressed in terms of sources of the first type only.

It is to be noted that this reduction of the number of types of sources has depended
upon the possibility of choosing a time, before which there is no disturbance at any
point within the given closed surface, and also that 1t involves an existence-theorem,
which has not been proved. For a sphere, the existence-theorem could be proved by
help of the formulze in § 10.

Law of Disturbance in a Secondary Wave.

22. As a first application of the general formule we may consider the law of dis-
turbance in a secondary wave. We suppose that simple harmonic plane waves, of
the simplest type, polarised in the plane (z,z), and propagated parallel to the axis
of z, are to be resolved into secondary waves due to sources, situated on the wave
front z = 2. Let the primary waves be given by

F=o, G=—lsne(—cf), H=0,]
u:cos;<(z-—-0t), v=20, w =0, l& ' (44)'
f=0, g = — ksink(z — ct), h=0,)
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24 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

The disturbance at any point, for which z > 72/, is given by the following equations,
in which [, m, n now denote the direction cosines of the line, of length 7, drawn from
the point (2, 7/, 2) to the point (x, v, z) :—

4oy = ” dx'dy [/% fcos k(7 — ot 4+ 7) + krsink (2 — ot 4 )}

+ ?—é fsink (2" — ot 4+ 1) — wrcos k(2 — o + )}

I >§(

Krd

— %) sink (2 — ¢t 4 1) — Bkrcos k (2 — ot + 7')}], (45).

Zm

dqv = “d 'y’ {(3 — ) sink (7 — ¢t + r) — 3xreos k(s — ot + )}, . (46).

dmw = ” da'dy’ [——- L fcosk (z — ¢t + 1) + krsink(z — ot + )}
+ Zﬁ (3 — k) sink (2 — o 4 1) — 3krcos k(27— ot + 1)} :](47).
Also
4n-f = Hd ol/ lm £(8 — 1) cos k (7 + ot + ) + Brrsink (2 — ot + )}, . (48).
41:9'::Hdac'dy [ ke {sin k(2 — ot + 1) — «rcos k(2 — ¢t + 1)}
+ j:; fcos k(7 — ¢t + ) + krsin k(2 — ot + 7)}
~ n2+l
— —— {(8 — k¥ cos k(' — ¢t + )+ 3krsink (' —ct +o)5] (49).
dwh = H da'dy’ [:?;’ Kk {sin k(¥ — ¢t 4+ r) — krecos k(2" — ct + 7)}
7::% {(8 — k) cos k (2" — ot + 7) 4 Bkrsin k(' — ¢t + r)}] (30).
At a great distance, the contribution of the element of area dS to (u, v, w) is
(n+m* 4+ 0, —Im —l——ln)@sinx(z'——ot—}—r)' (51);
‘ ’ H A 3 e . . 5
the magnitude of this contribution is

(1—|—n)~—sm;<(4'-—-0t+7"), C L (32),

and its direction is at right angles to that of », and makes with the plane (z, ) the
same angle that this plane makes with the plane (z, ). This direction is shown by
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 25

the point P in a spherical figure (fig. 2), in which Z represents the direction of pro-
pagation of the primary waves, R the direction of », NX is the great circle of which
Z is pole, NI is the great circle of which R is pole, and P is on NI produced so that

NP = NX. It is easy to verify that the direction cosines of the radius vector, drawn
from the centre of the sphere to P, are

n 4+ m? + n? —
1-+n ’ 14+ 2’

Again, at a great distance from the plane, the contribution of the element of area

dS to (f, g, h) is

1
(—lm, n+ P+ n?, —-—m—-—mn)gf—“?;ccos;c(z'—Ct+r);_ .. (53):
o
and its magnitude 1is
xdS ,
<1+1®);I;;KCOSK(Z —ct+r); . .. (54);

its direction might be shown by means of a construction similar to that used for the
direction of the contribution to (u, v, w).

The result obtained by Sir G. StokEs®™ would be expressed, in the notation here
employed, by the statements that the magnitude of the contribution of the element
ds to (u, v, w) is

. 0 wdS . , ‘ .
V(mP 4 5?) (1 + n) Lo S0 K (@ =—ct4ry, . . . . . (55),
and that its direction is that which would be shown by the point antipodal to Q,

where RX and NI intersect (fig. 2). It has been pointed out by Lord Rayrercirf that

* “Papers,’ 2, p. 286.
t ¢ Wave Theory of Light,” pp. 452, 453,
VOTI. CXCVIL—A. B
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26 PROFESSOR A. Ii. H. LOVE ON THE INTEGRATION OF THE

such factors as 4/(m* 4 %) and 3(1 -+ n) are of no importance in the ordinary appli-
cations of expressions for the law of disturbance in secondary waves, and that, in
fact, the enquiry after such a law involves a certain ambiguity. In the above deduc-
tion of such a law, we have used the general formulse involving sources of two typos
if we could have used formule involving sources of one type only, the result would
probably have been different ; this is the origin of the ambiguity referred to by Lord
Ravreem.

23. There is another difficulty attending the deduction of a law of disturbance in
secondary waves from formulee applicable to the propagation of a system of plane
waves, viz. : that integrals such as (45) taken over an infinite plane are not con-
vergent. The disturbances in the secondary waves ought to combine to give rise to
the disturbance actually propagated, or the result of the integration ought to be to
reproduce the displacements in the primary wave. If we form such an integral as
(45) for a portion of the plane (@', 7/), and afterwards extend the boundaries of this
portion indefinitely, we do not arrive at a definite limit. Let O be the point at which
the disturbance is to be estimated, O’ the foot of the perpendicular from O on the
plane z =2’ (fig. 3), and let the portion of the plane be bounded by a circle, ot

o

Fig. 3.

radius R/, with its centre at O. We introduce plane polar coordinates »', ¢, with
origin at O’, and put [ = sin fcos ¢, m = sin fsing, 7 = cos 0 ; then the value of
the expression (46) for v is

1 (% o, sin® @ sin ¢ cos ¢ 9 o\ Lt ,

I PR M i _— . P S N . . e AN
4-’”50 dcﬁgoa dr e {(8 — k) sink (z' — ¢t + 1) — 31 cos k(2" — ot + )},
and this vanishes identically, however great R/ may be, on account of the symmetry
of the circular boundary ; it would not have vanished if we had taken a boundary of
a different shape, or a circular boundary with its centre away {rom 0. With the
boundary chosen as above, we could show that w, f; & vanish. To form the expression

for u, we put
’ 7 z2— 7

sin 0 = =, Co8 0 = R P (22, RP=RP A4 (2 — )
U= k(' —ct+7r)
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and remember that z and 2’ are constants in the integration ; we find
1 2= 2
1= j de ( cZ; L*-* (cosy + krsin) 4+ (blﬂlll — KI'COS 1)
477' 0 vz
7; [< _ ) ..I_ Slﬂy (/) { ("*“— 4) }}{(3 —_— Kz?’g) Sinlp — 3k¥ cos HL’}}
o

2

R o 9
=1 ( dr [Nj " (cos 4 wrsin ) 4+ (sm Y — k1 cos )
da-—z

— éiﬂ { 1 (= :jl)g} {(8 — «¥®)sinp — 3k cos xp}] .

This is immediately integrable, and we find*

2 — 2\? 1 —z
w = ——%[(1 +7 m ) cosk(? — ¢t + R) + 1){1 —_ <4JVR?V) }smx(z Ct—l—R):I
4 cosk(z-—ct); . . . . (56);
and, when R is very great, this is approximately equal to
cosk(z— o) — tcosw(d —ct+R). . . . . . . (57).

Thus the value of u for the primary wave is reproduced by the secondary waves
sent out from the parts of the plane, which are not at a very great distance. In like
manner we should find for ¢ the value

_— KSinK(z — Ct)

il

giving, when R is great, the approximate value

;{z’)z sin « (2" — ¢t 4+ R) — 1 {1 (= — 9)“} cos k (# — ot + R)]

kR ¥

—ksink(z—ct)+ txsine(? —ct+R); . . . . . . (58);

and, as before, the value for the primary wave is reproduced by the secondary waves
sent out from the parts of the plane, which are not at a very great distance. Both
for u and for g, the distant parts of the plane contribute something finite to the
disturbance ; just as, in the ordinary elementary theory, there may remain a portion
of a HuverNs’ zone uncompensated ; such portions are always disregarded.t

The difficulty here considered arises entirely from our having applied to an infinite
plane, formule, which were obtained on the express supposition that the surface, to
which they are applied, lies entirely within a finite distance of the point, at which

* Equation (56) determines the intensity, at a point on the axis, of light diffracted through a circular
aperture, the incident light being parallel, and the ordinary optical rule being assumed to hold (§§ 24, 30).
T Cf. Basser, ¢ Physical Optics,’ p. 46, or Lord RavLEIGH, ¢ Wave Theory of Light,’ p. 429.
B 2
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28 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE

the disturbance is estimated. The difficulty could not be evaded by adopting a
different law of disturbance in secondary waves, and one aspect of it has been noticed
by Sir G. Stoxks® in connexion with the law obtained by him. The difficulty would
not arise if we took a system of diverging spherical waves, and resolved the disturb-
ance at a point O, outside some particular spherical wave front, into secondary waves
due to a distribution of sources over this front. The difficulties of integration are,
however, in this case considerable ; when the point O is at a great distance from the
sphere, the integrals can be evaluated approximately, and it can be verified that the
digturbance corresponding to the primary wave is reproduced.

Passage of Waves through an Aperture.

24. The general problem of the passage of radiation across an aperture in a screen
would involve a solution of the general equations (4) or (12) of § 9, subject to
boundary conditions holding all over both faces of the screen; and, unless the
incident radiation and the shape of the edge have very simple characters, this
cannot at present be attempted.t In the theory of diffraction, it is customary to
‘agsume that the disturbance at points of the aperture, to which the disturbance
on the further side is due, is that which would be found at those points if there were
no screen, and also that the elements of the surface of the screen contribute
nothing to the disturbance on the further side.f In the Theory of Sound, Herwm-
norrzy has justified the use of a somewhat similar assumption in the problem of the
open pipe. In the present theory the question may be formulated as follows:—A
train of radiation is propagated on one side of a surface S towards the surface ;
there 1s an aperture in the surface, and the transmitted radiation is to be represented
as due to sources situated in the aperture; how must such sources be distributed ?

[25. (Re-written March, 1901.)—We simplify the general question by means of two
suppositions :-—(1.) that the incident radiation is represented by simple harmonic
functions of the time, with period 27/rc; (2.) that the surface S is plane. The
first of these enables us to eliminate all vector potentials, by the rule

F, G, H)=«2(fig, h) .« . . . . . . . (59)
It will appear later that the second supposition constitutes a practically unimportant
restriction, when the aperture is small. We shall take the plane S to be given by

the equation z = 2/, and shall suppose that the incident radiation is propagated on
the nearer side (z < 2'). The transmitted radiation, on the further side (z > '),

%

¢ Papers,” 2, p. 288.  (f. Lord Ravruiai, ¢« Wave Theory of Light,” p. 429.

t Cf. A. SOMMERYELD, ¢ Math. Theorie d. Diffraction,” Math. Ann., vol. 47 (1896).

i Lord Ravrmien, < Wave Theory of Light,” p. 430 ; or ¢ Theory of Sound,” vol. 2, § 291.
§ J. f. Math. (Crelle),” 57 (1859) ; or ¢ Wiss. Abh.,” vol. 1, p 303.
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EQUATIONS OF PROPAGATION OF ELECTRIC WAVES. 29

being regarded as due to imagined sources, situated in the aperture, can be calcu-
lated directly from the formulee of § 16, by first assigning certain functions of &,
y/, t as the forms of », . . . under the sign of integration, then substituting ¢t — r/c
for ¢, and finally integrating over the aperture. We shall take the forms, that

are to be substituted, for », . . . under the sign of integration, to be given by the
equations
w = il; COS kK Ot + ysink Ct, )
Lo oL (60),
f = ficoskot + fysmmkct, I
J
where %,, . . . are functions of &', ', for which
0B, 0,
721:83:;_8;i)/ R (29 8

and similarly for &, Further, we shall denote the values of «, . . . , resulting from
the integrations, by »,, . . . The answer to the general question of § 24, will thus
lie in the determination of the functions @, . . . These functions can be regarded as
the values, at certain times, and at points within the aperture, of a certain system of
magnetic and electric displacements. |

26. Before proceeding it will be convenient to record the forms for u,, . . . in

terms of the functions @, . . . It will be sufficient to put down the terms that
contain cos k ¢f.  We observe that in the formule of § 16

z — 2 or-1 OrL ]
s oe o’ l
N YV T o).
73 - 75 — 02 - o2 > o o ( 4) ’
== Pt _ o |
= T oy0z - oy’ g

and we also observe that, when the surface S is a portion of a plane (z = 2), we must
have [ = 0, m = 0, n = 1, the point (x, 3, z) being on the side 2 >72. We can
therefore write down the formule for v, . . . f,, . . . as follows :—

o, ., o .
dmu, = ”(lac dy l:-—- ,87 iy fcos k (¢t — 1) — wrsinx(ct — )}

o1 .
— }-}1—5-' k3G, {cos k (06 — 1) — krsink (¢t — 1)}

o }
4 4 2y k™ f11(3 — k%) cosk(ct — 7) — Brrsink (¢t — 7)}

__(z/—7/)“;(2—Zf)g-l{cosx(cf—r)}},. Co ... (83),
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30 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE
( r 81“1 . . )
drv, = || da’ dy — 5 N fecos i (0t — 1) — wkrsink(ct — )}
A 3 9,.2 ¢ . Skr ¢ 2\
~ 3 00, 7, {(3 — k¥ cosk(ct — r) — 3xrsink(ct — r)}
o1 .
+ o *fifcosk (0t — r) — krsine(ct — 7)}

2—4/2 ;7—,1:’9—. i ‘
+ (H*Q;j_ (= 2 >—-j] fcos k (Ct — 7)}J‘ se oL (64),
/ ~1 1\
4w, = ” da'dy’ l:<221%; + 7, ja- )zCOSK(()f — 1) — grsink(ct — r)}

1 <537“1 o~ 1
3

e N T "j1> §(3 — k¥?) cos k (ct — 7)

— 3krsink (Cf — o)}:',, (65);

dnf, = H da'dy’ [~ “‘*jISCOSK(Ct — 7%) = kP SNk (CL = 1)}
o1

— g Diieosk(Ct —7) — wrsinw(ct — r)}

o1 .
+ % ;?/ﬁ’/ i {(8 — «k%?) cos i (0t — 1) — Brr sink (ot — 1)}
R T 1] IR )

21
-+ %:T ) { COS K (Cé — 1) — KIS K (ot — 1)}
(2 — 2 + (@ —a')

+ «? 5 i, COSK(Ct-—’Y‘)}]; L. (67),

/ bl o 1 - / B
dwh, = Hcla:’rl,y’ l:(jl (5[ + g, 8 ) fcos k (¢t — 1) — k1 sinx (¢t — )}

ol o1 . |
— %(aE "= e 2,51> {(8 ~ kM%) cos i (ot — 1)

— BKrsin k (0t — 7)}} .. (68).

Here the parts of w,, . . . that arise from @, cos « ¢f, . . . are written down, the
terms in sin x ¢t being omitted.

[27. (Re-written March, 1901.)—The forms of the expressions for u,, . . . have an
important bearing on the determination of the functions @,, . . . The integrals,
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which occur in these expressions, represent functions, which are continuous, and have
definite values, at all points, that do not lie in the plane z = 2/, and within the aper-
ture. At points within the aperture, the functions, defined by these integrals, present
discontinuities of one or other of three following kinds* :-~(a.) The integral, obtained
by replacing (x, y, z) by («, 7/, %), is convergent, and is different from the limit
obtained by bringing (z, 7, z) up to coincidence with (%', ¢/, 2’) through values, for
which z > 2/, or through values, for which z < 2’ ; these two limits are finite and
definite, and they are not the same. The term of (63), containing 0r~!/dz, is an
example of this peculiarity. (b.) The integral, obtained by replacing (x, y, z) by
(#, v, ), 1s not convergent ; but the limit obtained by bringing (z, y, 2) up to
coincidence with (27, 4/, #), on either side, is finite and definite, and these limits are
the same. The term of (65), containing 0r71/ox, is an example of this peculiarity.
(¢.) The integral obtained by replacing (x, y, 2) by (', ¥', #') is not convergent, nor is
any definite limit obtained by bringing (x, ¥, z) up to coincidence with (2, 3, 2) on
either side ; but the ditference of the two values, obtained by taking (z, 7, z) at two
points, near the aperture, and on opposite sides of it, can be made less than any
assigned quantity by sufficiently diminishing the distance between the points. The
term of (63), containing 0%~1/0x?, is an example of this peculiarity.

The discontinuity of the expressions for u,, . . . arises from the representation or
the disturbance on the further side (z > 2) as due to imagined sources in the
aperture ; there are not really any sources in the aperture, but the disturbance
on the further side (z > 2/) is continuous with the disturbance on the nearer side
(z <#). To restore continuity, it is most convenient to regard the disturbance
on the nearer side as consisting of two superposed disturbances, denoted by A and
B. The disturbance A is represented by functions, which are continuous in a region
of space, containing all the points within the aperture, and within a finite distance
on either side of it; these functions have no singularities on the nearer side,
except the actual sources of the incident radiation. The disturbance B is repre-
sented by functions which have mno singularities on the nearer side, but have
discontinuities at the aperture, and these discontinuities may be of any of the kinds

presented by the expressions for u,, ... We shall denote the magnetic and
electric displacements, that belong to the disturbance B, by w»_, . . ., /., . . ., and
those that belong to the disturbance A by «, . .., f’, ... The displacements,

that belong to the disturbances A and B, satisfy the general equations of §9. We
shall take them to be given by the following equations :—

for A, w =1 = u,"coskCt 4 uy sinkct, )

P Freosntd frenect, | - (69) 5
f=J =/jicoskct+ fylsinkct, |
C J

* (ff. PoiNcARE, ¢ Théorie du Potentiel Newtonien ’ (Paris 1899), ch. 3,
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32 PROFESSOR A. E. H. LOVE ON THE INTEGRATION OF THE
for B w = u_ = u" cos kot 4w sinkct,
o o > (70).
f=f.=f"coskct 4 fsin«ct, J

We have now to express the conditions of continuity of magnetic and electric

displacement at the aperture. We suppose that w,, . . . are formed for a point
P, (z > 72), and that u_, . . . are formed for a point P’, (z < '), and we take any
P
Q
.P'
Tig. 4.
point Q in the aperture. The functions u,’, . . . are continuous in the neighbour-

hood of ), and have definite values at Q.  We form the difference
w, (P) — u_(P),

and allow P and P’ to approach Q by any paths,* the tangents to which at Q do not
lie in the plane of the aperture. Then the conditions of continuity are

lim {v, (P) — u_(P)} = u/(Q) cos k¢t + u,/ (Q)sinkct, )

. R
lim {7, (P) — f_ (P)} = /i (Q)cos ket + fy (Q) sinwoct, |
C J

The functions w_, . . . satisfy the general equations of §9 at all points on the
nearer side (z < #'), and are free from singularities in this region; these conditions,
with the conditions of continuity (71), suffice to determine the functions in question,
in terms of the functions #,, . . . introduced in § 25. One such determination will
be worked out presently ; here it is important to observe that 1t is effectively unique.
The conditions (71) require, in fact, that the discontinuities of w_, . . . should be
arranged so as to cancel exactly those of u,, . .. Now let us suppose that two
sets of functions «_, . . ., and u_ -+ Au_, . . . have been found, both of which obey
all the conditions imposed upon the functions u_, . . . ; their differences Au_, . . .
have no discontinuities at the aperture, and no singularities on the nearer side
(z < /) ; thus the disturbance represented by Au_, . . . belongs to the disturbance

’

* The path of I’ lies, of course, entirely in the region z > #, and that of I’ in the region # < 2.
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A, and not to the disturbance B. The relation between A and B is similar to that
between the ¢ complementary function” and a ‘particular integral” of a linear
differential equation, with a right-hand member; the difference between two particular
integrals is part of the complementary function.®

Perhaps the simplest way of building up the functions u_, . . . is to act upon a
hint, derived from a study of HeLmHOLTZ'S theory of acoustical resonators.t We
may, in fact, attempt to satisfy the conditions, by regarding the disturbance B as
consisting of a system of standing waves; and we find that the method thus
suggested is successful. We shall proceed on the assumption that the displacements,
represented by w_, . . . , constitute a system of standing waves.]

28. Having regard to the proposed plan of passing to a limit when the point
(z, y, ) is brought to coincidence with (@, v/, #), we see that especial importance
attaches to the limiting values of such expressions as

cos k (0t — 7) — krsink(ct — 7),

which, in § 26, have uniformly been placed in { }; and it appears that all these
limiting values are numerical multiples of cos x ¢t. This remark indicates that the
discontinuities of the terms 7, sin « ¢f, . . . are independent of those of the terms
@ cos k Cf, . .. Again, when the expressions are, as above, replaced by their
limiting values, it appears that every term in wu,, . .. might be interpreted as a
differential coefficient, either of the first order, or of the second order, of the potential
of a distribution of surface density on the area within the aperture. Now it is
known] that, the charged surface coinciding with the plane z = const., first differential
coefficients of the potential with respect to x and y are continuous in crossing the
surface, and the first differential coefficient with respect to z has a definite discon-
tinuity ; further, it is known that all second differential coefficients are continuous in
crossing the surface, except the two that are formed by differentiating with respect
to z once and either « or y once. These considerations guide us to a proper choice of
displacements in the standing waves represented by u_, . . . ; for example, in the
second line of the expression for 47w, , the factors

o1 —
o KN

must be retained, and multiplied by a function of = and ¢, of which the limit at » = 0
is cos k ¢t.  But we should not arrive at a proper choice by replacing the expressions
in { } by their limiting values ; for the system of displacements thus arrived at would
not satisfy the fundamental differential equations. This consideration suggests that

* ForsyTH, * Treatise on Differential Equations,” ch. 3.

T See the memoir already quoted, particularly equation (29¢), HeLmuortz, ¢ Wiss. Abh.,’ vol. 1,
p. 377,

1 Cf. PoINCARE, ‘ Théorie du Potentiel Newtonien,’ ch. 3.
VOL, CXCVII.—A. F
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the functions of » and ¢, that are to replace the expressions in { }, being factors in
certain particular solutions of the differential equations, and even functions of ¢,
could be arrived at by changing, in { }, ¢ into — ¢, and taking half the sum; for
example we should replace

cos k (0t — r) — wkrrsink (ol — )
S {cos k(ct — 7) — krsinx(ct — ) 4 cos « (¢t + 7) + wrsin k(ct + )},

or by

cos k Ct (cos k1 -+ k7 sin kr).

This comes to the same thing as picking out from each expression in { } the terms
that contain cos x ct, and rejecting those that contain sin « ct.
We accordingly take for w_, . . . forms given by such equations as

—1

, o1 ) .
dmu_ = cos k Ct ” da! dy [— o, {eos k1 4k sin K1}

2,1
—687 5 kG {eos ki 4 k1 sin kr}
L O ~
38&3@; kK2 {(3 — &%) cos krr -+ Bkr sin xr}

=P+ =)

o
o

g‘l{cosma}}, o (72),

ort or1

4w_ = cos k Ct ” da'dy’ [(ul R % > {cos k1 4+ k7 Sin kr}

P 5 O .
—tk <91 5 — A oﬁy) (3 — &) cos kr + 3krsin Kr}]. . (73).

29. According to explanations already given, we shall have
. , ' Vo or~1\ o1
47 lim {u, (P) — u_(P")} = coskct H do'dy’ a, [<—-— EZ)JF + (?)z)_]

= dwii, (Q)coskct . . . . . . . . . . . . (74)
Again

47 lim {w, (P) — w_(P')} is the limit of
L . _ [Prd
T3k H dz'dy [{g <8waz>+

s ‘ A ‘
- {91 (3;;5;>_ f1<0:/84> } {(8 — k%) cos k1 + 3krsin kr} cos k 06] .

o=
_f1<%;>+}{(3—-1< ?)cos k(ct — 1) — 3krsin k (ct—17)}
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ot 0 Ot
We write ~—=- W = T 30 8 and similarly for y, and integrate by parts; the result

contains a line integral round the boundary of the aperture and a surface integral,
and the former contributes nothing to the limit we are seeking, unless the point Q is
indefinitely close to the boundary of the aperture. Thus the limit we are seeking is
that of

1 Lo, [/or1\ /9§ d .
— gl @y [(75), (3 = 5) 106 = %) eos (et = ) — i1 — )
or\ /05, Of
—\ & )_ <8%’ - ay,l/ §(3 — «™?) cos kir 4 3k1sin Kk} cos kCl

<§1 T=E N ‘7/7—3> { — k®r¥sin k(ct — r) + &% cos k(ct — 1)}
N

‘Op-1 & — Ry — ] .
+ <m§)zﬁ <g1 = - A 4 . Y > {k3r¥sin kr 4 k*r cos kr; cos k Ot ;

in this expression, the two last lines vanish in the limit, and the others yield the value
at Q of

£\
A2 @Z‘ — gTj}/ Cos k Ot .

Thus we have
47 lim {w, (P) — w_(P)} = 4w w (Q)coskct; . . . . (75)
and it follows that the conditions of continuity are satisfied by putting

= e ’ __(,
”.1—7‘1,?"2—“2»]

T 76).
fizﬁ’>ﬂ=ﬁ"Ji> e

By this result, the transmitted waves on the further side are connected with the
waves on the nearer side; and it is manifest that the result would not be disturbed if
the surface were not plane, provided that all the linear dimensions of the aperture are
small compared with the radii of curvature of the surface.

[80. (Partly re-written March, 1901.)—We return now to the general question
propounded in § 24, and seek to estimate the character of the answer that we have
found. In § 25 the question is made more precise by showing that the distribution
over the aperture of sources to which the transmitted radiation can be regarded as
due, depends upon the values, at certain times and at points within the aperture, of a
certain system of magnetic and electric displacements ; these values are the quantities
denoted by @, . . . In§ 26 the transmitted radiation is expressed in terms of these
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quantities ; the functions by which it is expressed are those denoted by u,, . . .
These functions are defined for points on the further side by expressions which are
not continuous up to and across the aperture; but they represent the transmitted
radiation at any finite distance from the aperture. The actual disturbance is
continuous up to and across the aperture. We seek accordingly to represent the
disturbance on the nearer side by means of functions which are defined for the nearer
side, but are not continuous up to and across the aperture, the discontinuities being
so arranged that the displacements on the nearer side shall be continuous with those
on the further side. In § 27 we separate the expressions of these functions into two
parts, thus regarding the disturbance on the nearer side as consisting of two super-
posed disturbances, there called A and B. The functions representing the disturbance
A are continuous up to and across the aperture ; those representing the disturbance B
are not ; but their discontinuities cancel exactly those of the functions u,,. . . The
determination of B is in a certain sense unique. In § 28 we verify the supposition
that B may be regarded as a system of standing waves, by actually determining, in
accordance with this supposition, the functions involved in B, viz,»_, . . . , in terms
of the functions @;, . . . In § 29 we show that the displacements, of which the func-
tions @, . . . are the values, at certain times, and at points within the aperture, are
the displacements belonging to the disturbance A. The disturbance B and the trans-
mitted radiation are thus determined in terms of A, and the general question of § 24
1s reduced to the determination of A.

The components v/, . . . f’, . . . of A are subject to the following conditions :—

(1.) On the nearer side they satisfy the equations of § 9 everywhere, except
possibly at certain singular points.

(2.) These singular points are the actual sources of the incident radiation.

(8.) The functions ', . . . f', . . . are continuous up to, and across, the aperture.

(4.) At all points of the screen, not points of the aperture, they satisfy certain
boundary conditions.

The boundary conditions depend, to some extent, on the material of the screen ;
and they will usually take the form that some components of electric or magnetic
displacement vanish. The components, affected by the condition, are those of the
displacement on the nearer side compounded of A and B, #.e., such quantities as
u + u_; but, as B falls off rapidly, with increasing distance from the aperture, it
will generally be sufficient to impose the boundary condition on the components of
A only.

‘We may now give the following interpretation of the analysis :—The disturbance
B, consisting of a system of standing waves, which are important in the neighbour-
hood of the aperture only, can be described as the “effect of the aperture.” The
disturbance A can be described as “ the incident radiation, as modified by the action
of the screen.” The result of § 29 can be stated in the form :—The transmitted
radiation is to be calculated from the incident radiation, as modified by the action
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of the screen, in the same way as if this radiation passed freely through the
aperture.

This result differs from the ordinary optical rule, that the transmitted radiation
is to be calculated from the incident radiation, unmodified, as if this radiation
passed freely through the aperture. In the application of this rule no attention is
paid to the boundary conditions at the screen. If we could assume that the
disturbance at points of the aperture when the incident radiation is modified by the
action of the screen, differs very little from the unmodified incident disturbance, then
the result and the optical rule would be in practical agreement. The success of the
optical rule seems to show that the modification of the incident radiation by the
screen is unimportant, at points within the aperture, when the wave-length is short. ]

The result obtained may be applied with greater certainty when the disturbance
on the nearer side of the screen has been calculated in accordance with a known
boundary condition, holding over all the unperforated portion. This is the case
when, instead of an incident train of waves, we have, on the nearer side, standing
vibrations, for which the boundary condition is satisfied. In such a case, the values
to be assigned to the components

u," cos k ¢t + uy sin k Cf,

of the disturbance A, . . . at points of the aperture, are the values that wu, .
would have if the screen were unperforated. This remark applies to the problem of
the communication of vibrations from a condensing system to the surrounding sether.
We shall now take up this problem, having regard especially to the example of
concentric spherical conducting surfaces, with a very thin dielectric plate between
them, the outer surface being perforated by a small circular aperture.

Electrical Oscillations between Concentric Spheres.

31. It has been pointed out by LarRMOR* that the most important modes of electrical
oscillation in a condenser, with a thin dielectric plate, are those in which the charge
surges over the conducting surfaces, the lines of electric force being always normal
to these surfaces, and the lines of magnetic force tangential to them. In a condenser
with concentric spherical conducting surfaces such modes of oscillation exist, what-
ever the thickness of the dielectric plate may be; and the analysis requisite for
dealing with them has been developed by Lams.f The required solutions of the

* ¢London Math. Soc. Proc.,” vol. 26 (1895), p. 119.

t ‘London Math. Soc. Proc.,” vol. 13 (1882), p. 51; or ‘Hydrodynamics, pp. 555, ¢f seq. The
notation here used will be that of the * Hydrodynamics.” It is worth while to recall some of the properties
of the functions ¢, defined in equations (77): they satisfy the equations
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fundamental equations are included among those obtained in § 10, by proper choice of
the function .

Taking the centre of the spheres as origin, let , denote any spherical solid
harmonic, and write

0@ = (=r(z) 5

1 0\*cos
n@= Loyt o

g
A () + BY.(0) = x. (D) ,

A and B being constants. Then, in the modes of oscillation under discussion, we
have

' 0 0 0 0 0 0
(u, v, ?U) = cos Kk Ct. X,L(K)") . <y é—z —_— 2 é@/ , 2 é; - a; , & 51} — Y a;\ Wy,

/

(78),

1 4 awn 9 9, a @y 1
f . é}?:-——l COS Kk Ct {(n + ]) Xn—1 (K’)') a}j = MXui1 (KT) 2pnts a—l(m>}, (79),
with similar formule for ¢ and % ; the value of « and the ratio A : B are to be found
from the boundary conditions, which are that the electric force is normal to the
bounding surfaces.
The vector ( /, ¢, h) has a radial component of amount

—n(n 4 1)ecoscctrx, (kr)ow, . . . . . . . (80)

If then we form a new vector from ( f; ¢, ), by resolving this radial component in
the directions of the axes, and subtracting its resolved parts from f, g, », the new
vector will have the same tangential components at any sphere as ( £, g, &) has ; the a-
component of the new vector is

n(n + 1) 1
752771:1-71 cos k Ct [{Xn(l{’]“) - 7‘?/ Xn—1 (K’}")} -83;

,CQTQ 21 a @y
— ! X (k7)== = X (s )} pinrt 2 <Tl>] ,

7

¢ e
Ui ({) = = {¥mr ()
@ + D¢ = a1 () + Curi (),

and these equations are also satisfied by ¥, and by x, provided the constants A and B are supposed not to
change with n. Reductions made by using these equations will be introduced without remark.

A

(& + 1 - e D ey, ) = o,
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or, what comes to the same thing, the new vector is
cosk Ct O 0w, Ow,

Jw,," 0 0 0\/ @\
g o T . {amtl g —n k.l n e+l [ 7 e — n .
Gn + Dmor X (k)3 [(n + 1)<8Jc > oy’ az) +w <893 > oy’ 8z> <7"2“+‘,)} ’

and the condition that (£, ¢, &) should be radial, at the conducting surfaces » = 7,
and » = 7y, 1s that

0
5;{4*"“)(,,(727”)}::0 R €28

at 7 =17, and » = r,. These two equations determine the ratio A : B and the value
of «.
When the conducting surfaces are very near together, we have approximately

82 n+1
aya 1 ()} =0,
or, in virtue of the differential equation, satisfied by x,,

rd=nn+1), . . . . . . . . .(82),

a result otherwise obtained by Larmor.* The ratio A :B is determined by the
equation

AL o)+ B e (e)} =0, L L (83),

which holds for » = 7.
32. We consider, in particular, modes of oscillation, for which the axis 2 is an axis
of symmetry. We take

Z/’I‘:p,, w,LZ’I"’PM(p,), e e e .(84),

where P,(p) is the zonal surface harmonic (LEGENDRE's coeflicient) of ovder n. We
find

. a a\ — 2ntl a § A= (n+1)

(\yaz—zé‘eﬂwn—q <‘I/8z—za>{7 Pﬂ(#)%’

y
== ra) o
= ey T+ |
Now it is easy to showt that
S = {(" + 1P+ M%} L (s),

* ¢London Math. Soc. Proc.,” vol. 26.
T One way of doing this is as follows :—

( — )n 817,7.—-3

—<— = the coefficient of 2» in the expansion of {z? + #* + (z — h)}}~%;

n! o
2 2 21 —3 3 ho | B2\—%
also {22 + 92 + (2 — I)?}—% = 9731 —2;L; + o),

=
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and we deduce without difficulty that, when o, = 7" P,(n),

- ar, .
(u, v, w) == COS k Ct 1" IX,L(K’I") ?Zp, (y, — x, 0) e (86).
Forms for f, g, h could be obtained by a similar analysis; but the values that they
would take near the boundaries r;, and 7, can be written down immediately from the

formula (80), viz.: we have, at the boundaries,

(fs g, ) = —n(n+ 1)coskctr ™y, (kr) Pn) . (x, y,2) . . . (87).

When 7, and », are nearly equal, this formula holds approximately for all values of
r that are involved.

33. The kinetic energy of the mode of oscillation here discussed can be calculated
without difficulty. We require the value of

1

”juz + 0* + w?) dr,

8

P "o L . ' dP\?
=" Csint ot [ dr [ dp s g, (o) 22 (1 — ) <dﬂ>

7 -1
., . "o

= %@%{% K*c? sink ¢t '[ {7 (k)2 00 0L (88).

7’1

To calculate the integral in this expression, we have recourse to the differential
equation

& o n( A+ D¢ .
{w + = 7:5“*}{7" (k) =0, 0 (89),
and the condition that
d Y3
;l’;“ {’)‘ +1X7, (K?’)} =0 e e e e e e e (81)
and (ol = L2k k

1 - 2pk + k2t (1 = 2pk + K2

. N/ 1
{1 - b tm}a 2kt kB

I

S ® P,
= 2P n — kY2l "
Oflln + (2 1)%/ i
14 S <Pn +o2p@n @3@:&)5
1 dl‘ (l‘u

and we also have the known relation
L 3

Rtk —~ aP,.
dp. dp e
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at both boundaries. Taking « and «’ to be two possible values of «, and A and \" the
corresponding forms of s *+1 x(x7), we find

(& — «?) ‘( W = [}\ (C% -\ d)il Y

)

dr

)
1
and then, by the usual limiting process,*

To A o
[Pede = L[R2y 20T

2 | dr dr de dr
or ’
no + 1 ;
‘ PGy ()2 = L [{1 — ’L(%ﬁ).}%zma Exo(re) 12
J Ty '
n(n + 1) 43
— {1 - ""K,“;;}“"}’)"f r {Xn (K?'J)}2]. . (90)‘

When 7, is very nearly equal to 7, this becomes, approximately,

["re () dr = (ry = ) k0 (a4 D) 0P O () L. (91)

”

After the appropriate expression (90) or (91) has been substituted in the expression
(88), the total energy, kinetic and potential, is to be obtained by suppressing the
factor sinkct. Thus, when 7, is very nearly equal to », the total energy of the
oscillating charges on the condenser is

2
Fo—m) g, D ler)it o (92).

Communication of Electrical Oscillations to Hxternal Medzum.

34. When there is no aperture in the outer conductor, the oscillations considered
in §§ 31-33 would, in the absence of dissipation due to imperfect conduction, continue
indefinitely ; but they would not produce any effect in any external electrical system.
When there is an aperture, we may take account of it by supposing that the displace-
ments (magnetic and electric), in space external to the condenser, are of the character
corresponding to waves diverging from sources distributed over the-aperture only,
and that the displacements within the dielectric plate of the condenser differ from
those, which would be found in a normal mode of oscillation, by the superposition of
displacements corresponding to a system of standing waves, which are insensible
except in the immediate neighbourhood of the aperture. We may suppose the

* (f. Lord RavLEIGH, ¢ Theory of Sound,” vol. 1, p. 325.
VOL. CXCVIIL—A., G
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diverging waves, and the standing waves, thus introduced, to have the same period
as the oscillations in the normal mode; and then the displacements corresponding
to them will be determined, as in § 29, by the conditions that the electric and
magnetic displacements must be continuous across the aperture. As we are con-
cerned rather with the general features of the transmission of disturbances across an
aperture than with special details, we may select any normal mode of oscillation for
examination. We shall suppose the aperture to be a circle of radius «, small com-
pared with the distance r, — 7, between the conducting surfaces ; and we shall con-
sider particularly modes of oscillation symmetrical about the axis of the circle, taken
as axis of z.

35. For the calculation of the energy dissipated we shall take, in the notation
of § 25,

(@ 7 m) = " e () (s = @, 0)
=&.(y, —«,0),say, . . . . . . . . .(93),
where ﬂ(fn’?h]—) has been written for <5§%’>H:1 . and we shall take
(fis Gu P) = —n(n 4 1) x, (krg) - (2, ', 1)
=q. (@, Y, r).say, . . . . . L oL (94),

these being with sufficient approximation the values obtained in § 32 ; the normal
mode of oscillation here discussed will accordingly be one for which the axis z is an
axig of symmetry.

We have now to find the most important terms in 47w, . . . at a great distance
from the aperture, the values above written being substituted for @, . . .. We
shall take R for the distance of the point (x, v, z) from the centre of the aperture,
and, whenever we wish to do so, we shall expand 7 in the form

— L — 1
r= R4 ‘i;-{ + Mi’l +. ...

Now, taking 47u ,, the first line of equation (63) is

(5 ™ T i (e = R) (= wR)
+ cos k (¢t — R) {1 —x® (2’ + yy)} ] da’dy’

approximately, where the integration is taken over the area within the circle
#? 4y = a?, and terms of order higher than 2 have been neglected. The most
important, part of this is

mat .z — 1y 1Py cos k (ol — R)

4 R i
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which is of order R~ cos« (ot — R), the right order when R is great. We treat
every term exactly as this term has been treated. The second line of 4wu, is of
order R cos « (0t — R), and is to be rejected ; the third line gives

mat  2Pysink (¢t — R)

and the fourth line gives
mat oy + (2 — 7)* sink (00 — 1)
4 TR i R
Hence the most important part of v, at a distance from the aperture is

16 {f &y (/R; O (¢t — R) — 7 PZ ! sin « (ct — R)} )

In like manner the most important part of v, is

at {éfc%(z — 7y)

———"cosk(ct — R) — L S K (¢t — Pw

J

1 Rg

and all the terms of w, are of a higher order than these.
The results just obtained can be written

xat x

2 — y
(u,, vs, w,) = ﬁ{Kg = qos (0t — R) — g sin e (0f — R)} . <- v,z o> (95).

By a similar process it may be shown that the approximate forms for f,, 9., i, at
a great distance from the aperture are given by the equation

(frs 9us By) = IG—R {K{F smK(Ct R) + 19 cos « (ot — R)}

wE—=r) _yE—r) @+ y*
'("‘*’Tﬂ St w ) - (96).

We observe that the value of the magnetic force (u,, v,, w%,) at a great
distance is

Kot z—7, . Y z
(thyy Dy, W) =  L6R {Ké‘-’ R°s1nx(0t—R}+nGOSK(Ct—-R>}.<E,"R’,O>

(97),

so that the factors, that contain ¢, are the same for the electric and magnetic forces at
a great distance from the aperture.
36. Now let /, m, n be the direction cosines of the normal to a closed surface S
drawn in a specified direction (inwards or outwards); then the rate at which energy
a 2
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is transmitted across the surface, in the sense of the normal (I, m, n), is, by
Povnring’s Theorem,

4%27 ”{l(gu‘) — ho) 4+ m (b — fib) 40 (fo —gu)} dS . . . (98).

We can, therefore, find the rate of dissipation of energy from the condenser, by
forming this integral, for a sphere of large radius, R, and for the functions u., f,, . .

the normal being drawn outwards.
If we write, for brevity,

x = IR, y = mR, z— 1, = nR, k(ct — R) = ¢,

the rate of dissipation is

ﬁggfﬁfﬂgmgn¢+no%¢yﬂ%ﬂ+wﬁ)+wﬁdﬁ+wﬂ4—Mdf+wﬂ}ds
| (99),

taken over the sphere; and the amount of energy transferred across the sphere in a
period, 2m/(« ©), is given by the expression™

¢ /a\8 kt 7 0 e s N
4K§ﬁ@W&W+ww+WW&--a-~<wW
or 1t 18
2 \ 8 ™
0o [t 000
Y0
which 1s

8 /gD 2
e (5] (55 + ) aon,

bs]

Restoring the values of & and 7, this expression becomes

a

8
22 <2> Kt (n 4 1 g (k)12 (1 4 ol . (102),

where 7 is now the order of the spherical harmonic involved in the oscillations.

When », — #, is small compared with »,, the fraction of the total energy, which is
dissipated in one period, is obtained by dividing the expression here written by the
expression (92) ; it is

s

s @0 D (o) (U S ) g0 7 2y - - - - (109);
0 0 1

* The expression shows that equal amounts of energy are transmitted across the hemisphere in front of
the aperture and that behind. This arises from the circumstance that the wave-length is of the same order
of magnitude as the radius of the outer conducting surface, so that the waves bend completely round that
surface,
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and, at any rate when 7 1s not too great, this is a very small fraction, if 7, — », is
large compared with a, as has been supposed throughout the investigation.

37. The form of the result shows that the number of vibrations of the higher
modes, that are executed before the disturbance sinks into insignificance, is much less
than that of the lower ones. The occurrence of r, — 7, in the denominator of (103)
suggests that the principal factor in securing permanence of the vibrations is not the
capacity of the vibrating system, but the screening action of the external conductor.
The latter point might be illustrated further by considering the example of a spherical
condenser, in the case where #, 1s small compared with 7, The boundary condition
at the inner surface can be satisfied approximately by putting, in equation (83),
B = 0; and the frequency is determined by the equation

A
d%; o, ()l = 0. . . . . L (104),
when »» =1, The total energy, for a mode of oscillation given by w, = 1" P,(u), is

+1) 1 : :
1 nt1) on {1 _ 3?,,.@_;{1_74 B, (k)Y . ... (105),

2n 4+ 1 K g?
and the energy dissipated in a period is

a
5

%mz< >8K3n2 (0 F 1 2 L (k) (14 S ) s . . (106),
and it is clear that the fraction of the total energy dissipated in one period is of the
same order of magnitude as before, except that (a/r)® is substituted for the product
of (a/ry)" and {a/(ry — r)}. For the mode of least frequency % = 1, and we have
kry = 2°75 nearly,* instead of 141, its value when 7, is nearly equal to 1, ; and thus
the fraction in question becomes approximately

[ a\8 . . a \8 7
82w (— ), instead of being approximately 127 ( el Bl
\27, 27/ o=y

or the rate of dissipation of energy, for the spherical condenser, is less when the
capacity is very small than when it is very large.

* See J. J. THoMSON, ¢ Recent Rescarches,” p. 373.
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